

SPECIFICATION

曜凌光電股份有限公司

住址: 42878 台中市大雅區科雅路 25 號 5F 5F., No.25, Keya Rd., Daya Dist., Taichung City 428, Taiwan WEB: <u>http://www.Raystar-Optronics.com</u> E-mail: sales@raystar-optronics.com Tel:886-4-2565-0761 Fax : 886-4-2565-0760

SPECIFICATION

RET025664BYPP3N00000

CUSTOMER:

APPROVED BY

PCB VERSION

DATE

FOR CUSTOMER USE ONLY

SALES BY	APPROVED BY	CHECKED BY	PREPARED BY	
ISSUED DATE:				`` 0,

Contents

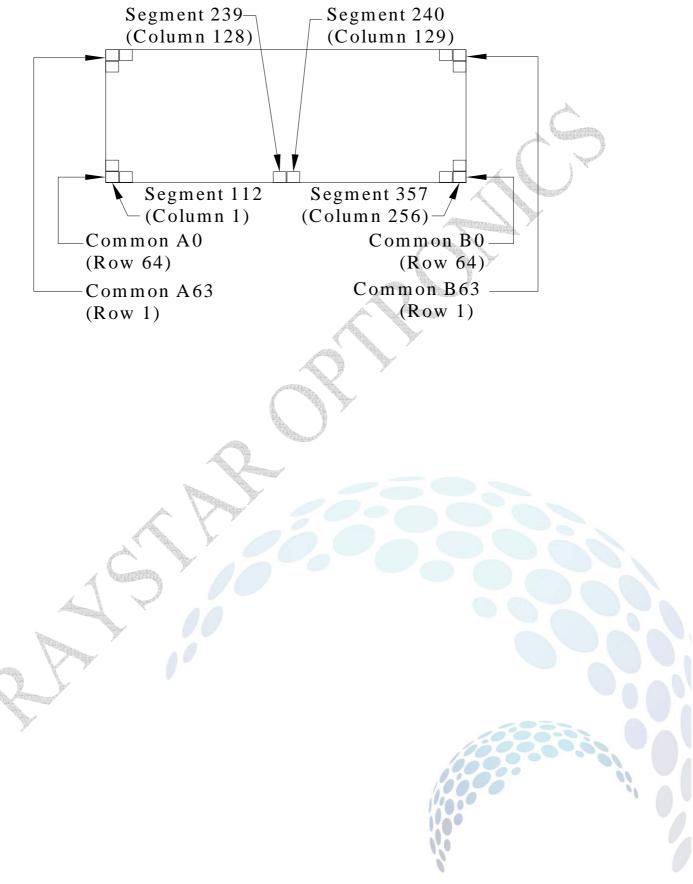
No.	Item	Page
1.	Revision History	4
2.	General Specification	<u> </u>
3.	Module Coding System	6
4.	Interface Pin Function	7
5.	Outline Dimension	10
6.	Block Diagram	11
7.	Absolute Maximum Ratings	12
8.	Optics & Electrical Characteristics	13
9.	Functional Specification	19
10.	Reliability	21
11.	Outgoing Quality Control Specifications	22
12.	Precautions When Using These OLED Display Modules	27
\langle		

1. Revision History

DATE	VERSION	REVISED PAGE NO.	Note
2013/06/13	1		First issue

2. General Specification

2.1 Display Specifications


- 1) Display Mode: Passive Matrix
- 2) Display Color: Monochrome (Yellow)
- 3) Drive Duty: 1/64 Duty

2.2 Mechanical Specifications

- 1) Outline Drawing: According to the annexed outline drawing
- 2) Number of Pixels: 256 × 64
- 3) Panel Size: 88.0 × 27.8 × 2.05 (mm)
- 4) Active Area: 76..778 × 19.178 (mm)
- 5) Pixel Pitch: 0.278 × 0.278 (mm)
- 6) Pixel Size: 0.3 × 0.3 (mm)

2.3 Active Area & Pixel Construction

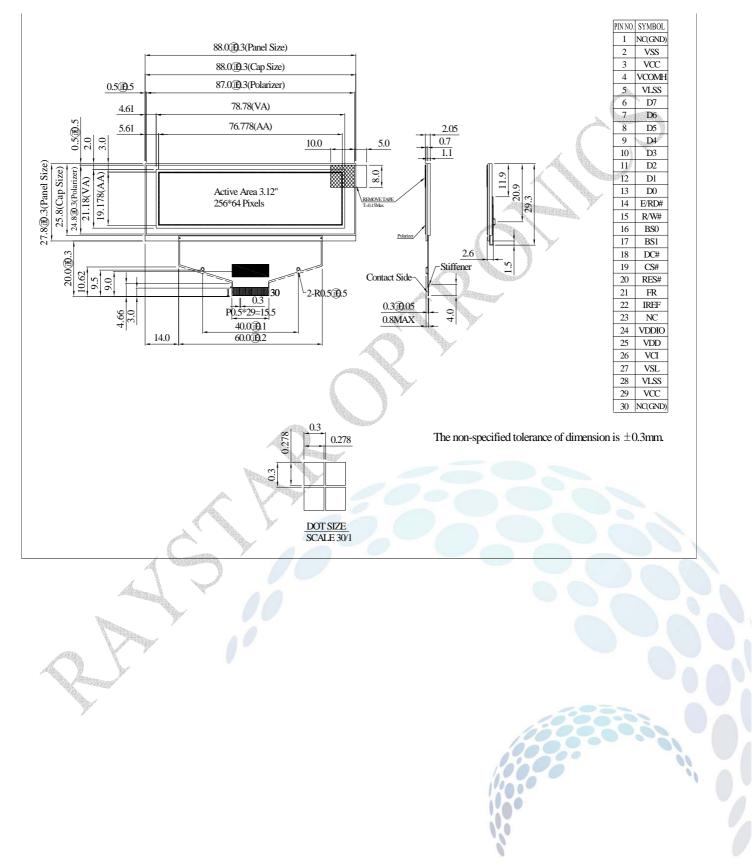
3. Module Coding System

1	2	3	4	5	6	7	8	9	10	11	12	13
R	E	Т	025664	В	Y	Р	Р	3	Ν	0	0	000

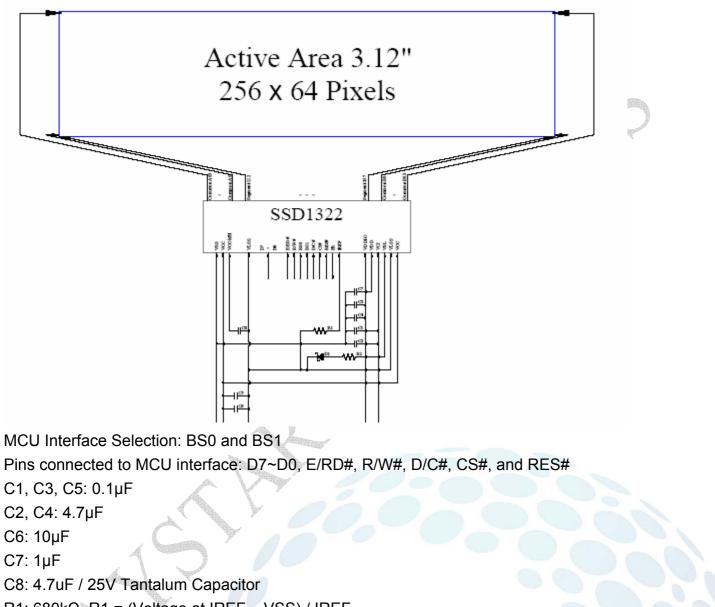
Item	Description		CA
1	R : Raystar Optron	nics Inc.	
2	E : OLED		
3	Display Type: C→C	Character Type, G→Graphic Ty	ре, Т→ТАВ Туре
4	Number of dots : 2	56 Dots x 64 Dots	
5	Serials code	_	
		A : Amber	R:RED
6	Emitting Color	B : Blue	Y : Yellow
		G : Green	W : White
7	Polarizer	P: With Polarizer; N: Without	ut Polarizer
8	Display Mode	P: Passive Matrix ; A: Active	e Matrix
9	Driver Voltage	3: 3.0 V; 5: 5.0V	
10	Touch Panel	N : Without touch panel; ⊤:	With touch panel
11	Species	0:Normal , 1:Sunlight readabl 4:Lighting	e, 2:Transparent, 3:Flexible,
12	Grade code		
13	Serial No.	000: Sales code	

4. Interface Pin Function

Pin Number	Symbol	I/O	Function
Power Supp	 bly		
26	VCI	Р	Power Supply for Operation This is a voltage supply pin. It must be connected to external source & always be equal to or higher than VDD & VDDIO.
25	VDD	Р	Power Supply for Core Logic Circuit This is a voltage supply pin. It can be supplied externally (within the range of 2.4~2.6V) or regulated internally from VCI. A capacitor should be connected between this pin & VSS under all circumstances.
24	VDDIO	Ρ	Power Supply for I/O Pin This pin is a power supply pin of I/O buffer. It should be connected to VDD or external source. All I/O signal should have VIH reference to VDDIO. When I/O signal pins (BS0~BS1, D0~D7, control signals) pull high, they should be connected to VDDIO.
2	VSS	P	Ground of Logic Circuit This is a ground pin. It also acts as a reference for the logic pins. It must be connected to external ground.
3,29	VCC	P	Power Supply for OLED Panel These are the most positive voltage supply pin of the chip. They must be connected to external source.
5,28	VLSS	P	Ground of Analog Circuit These are the analog ground pins. They should be connected to VSS externally.
Driver		A	
22	IREF		<i>Current Reference for Brightness Adjustment</i> This pin is segment current reference pin. A resistor should be connected between this pin and VSS. Set the current lower than 10uA.
44	VCOMH	P	Voltage Output High Level for COM Signal This pin is the input pin for the voltage output high level for COM signals. A tantalum capacitor should be connected between this pin and VSS.
27	VSL	Р	Voltage Output Low Level for SEG Signal This is segment voltage reference pin. When external VSL is not used, this pin should be left open. When external VSL is used, this pin should connect with resistor and diode to ground.
Testing Pad	ls	<u> </u>	
21	FR	0	<i>Frame Frequency Triggering Signal</i> This pin will send out a signal that could be used to identify the driver status. Nothing should be connected to this pin. It should be left open individually.


16	BS0	ļl	Communicating Protocol Select						
17	BS1		These pins are MCU interface selec	tion input.	See the fo	llowing			
			table:		1				
				BS0	BS1				
			3-wire SPI	1	0				
			4-wire SPI	0	0				
			8-bit 68XX Parallel	1	1				
			8-bit 80XX Parallel	0	1				
20	RES#	1	Power Reset for Controller and D	river		1930a.			
			This pin is reset signal input. When	he pin is l	ow, initializ	ation of			
			the chip is executed.			Contraction of the second			
19	CS#	1	Chip Select	A					
			This pin is the chip select input. The		abled for N	1CU			
	-		communication only when CS# is pu	illed low.	<u> </u>				
18	D/C#		Data/Command Control						
			This pin is Data/Command control p	(1251) J		ulled			
			high, the input at D7~D0 is treated a	69					
			When the pin is pulled low, the input transferred to the command register			in to			
			MCU interface signals, please refer						
			Timing Characteristics Diagrams.						
14 E/RD# I			Read/Write Enable or Read						
14			This pin is MCU interface input. When interfacing to a						
			68XX-series microprocessor, this pir			Enable			
			(E) signal. Read/write operation is in						
			pulled high and the CS# is pulled lov						
			When connecting to an 80XX-micro		, this pin re	ceives			
			the Read (RD#) signal. Data read or	peration is	initiated w	hen this			
			pin is pulled low and CS# is pulled lo						
			When serial mode is selected, this p	in must be	e connecte	d to			
		(\mathbb{A})	VSS.			~			
15	R/W#		Read/Write Select or Write						
	4 30		This pin is MCU interface input. Whe		-	d/\/rita			
	4	States of	68XX-series microprocessor, this pir (R/W#) selection input. Pull this pin						
		1	pull it to "Low" for write mode.	.o might i	or reau mo				
	× 7		When 80XX interface mode is selec	ted this n	in will be th	e Write			
			(WR#) input. Data write operation is	•					
			pulled low and the CS# is pulled low						
N/may			When serial mode is selected, this p		e connecte	d to			
			VSS.						
6~13	D7~D0	I/O	Host Data Input/Output Bus	1.0	00.0				
	-	_	These pins are 8-bit bi-directional da	ata bus to	be connect	ed to			
			the microprocessor's data bus. Whe						
			D1 will be the serial data input SDIN	and D0 w	vill be the s	erial 🚿			
			clock input SCLK.						
			Unused pins must be connected to	/SS exce	pt for D2 in	serial			
			mode.						

Reserve			
23	N.C.	-	Reserved Pin
			The N.C. pin between function pins are reserved for compatible
			and flexible design.
1,30	N.C.	-	Reserved Pin (Supporting Pin)
	(GND)		The supporting pins can reduce the influences from stresses on
			the function pins. These pins must be connected to external
			ground.



5. Outline Dimension

6.Block Diagram

R1: $680k\Omega$, R1 = (Voltage at IREF – VSS) / IREF

R2: 50Ω, 1/4W

D1: ≤1.4V, 0.5W

7. Absolute Maximum Ratings

Parameter	Symbol	Min	Мах	Unit	Notes
Supply Voltage for Operation	Vcı	-0.3	4	V	1, 2
Supply Voltage for Logic	Vdd	-0.5	2.75	V	1, 2
Supply Voltage for I/O Pins	Vddio	-0.5	Vcı	V	1, 2
Supply Voltage for Display	Vcc	-0.5	16	V	1, 2
Operating Current for Vcc	lcc	-	55	mA	1, 2
Operating Temperature	Тор	-30	85	°C	-
Storage Temperature	Tstg	-40	90	°C	

Note 1: All the above voltages are on the basis of "VSS = 0V".

Note 2: When this module is used beyond the above absolute maximum ratings, permanent breakage of the module may occur. Also, for normal operations, it is desirable to use this module under the conditions according to Section 3. "Optics & Electrical Characteristics". If this module is used beyond these conditions, malfunctioning of the module can occur and the reliability of the module may deteriorate.

8. Optics & Electrical Characterristics

8.1 Optics Characteristics

Characteristics	Symbol	Conditions	Min	Тур	Мах	Unit
Brightness	Lbr	With Polarizer (Note 3)	60	85	-	cd/m2
C.I.E. (Yellow)	(x) (y)	Without Polarizer	0.43 0.46	0.47 0.50	0.51 0.54	
Dark Room Contrast	CR		-	>2000:1	-	A
View Angle			>160	-	-	degree

* Optical measurement taken at V_{CI} = 2.8V, V_{CC} = 12V.

Software configuration follows Section 4.4 Initialization.

8.2 DC Characteristics

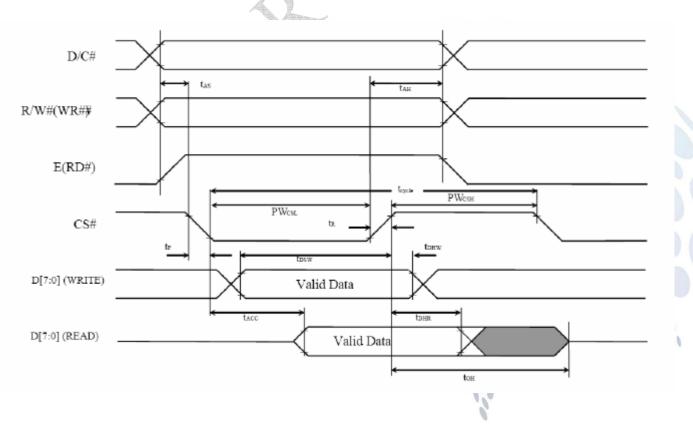
Characteristics	Symbol	Со	nditions	Min	Тур	Max	Unit
Supply Voltage for Operation	Vcı			2.4	2.8	3.5	V
Supply Voltage for Logic	Vdd		J C	2.8	3	3.3	V
Supply Voltage for I/O Pins	Vddio	₹ ¢	Ŋ	1.65	1.8	Vci	V
Supply Voltage for Display	Vcc		Note 3	13	15	18	V
High Level Input	Viн	×.		0.8×VDDIO		VDDIO	V
Low Level Input	VIL			0	-	0.2×VDDIO	V
High Level Output	Vон	lout	= 100µA, 3.3MHz	0.9×Vddio	-	VDDIO	V
Low Level Output	Vol	lout	= 100µA, 3.3MHz	0	-	0.1×VDDIO	V
Operating Current for Vci	Icı		Note 4 Note 5		1.8 1.8	2.25 2.25	mA mA
Operating Current for Vcc	lcc		Note 4 Note 5		26.3 41.1	32.9 51.4	mA mA
Sleep Mode Current for Vci	ICI, SLEEP			-	1	5	μA
Sleep Mode Current for Vcc	ICC, SLEEP			-	1	5	μA

Note 3: Brightness (L_{br}) and Supply Voltage for Display (Vcc) are subject to the change of the panel characteristics and the customer's request.

Note 4: Vci = 2.8V, Vcc = 12V, 50% Display Area Turn on.

Note 5: Vci = 2.8V, Vcc = 12V, 100% Display Area Turn on.

* Software configuration follows Section 4.4 Initialization.

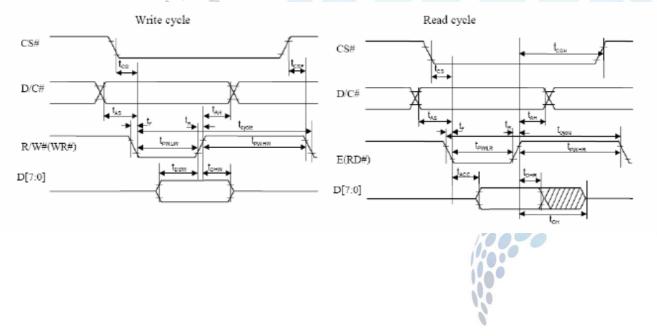


8.3 AC Characteristics

8.3.1 68XX-Series MPU Parallel Interface Timing Characteristics:

Symbol	Description	Min	Max	Unit	
tcycle	Clock Cycle Time	300	-	ns	
tas	Address Setup Time	10	-	ns	Ma
tан	Address Hold Time	0	-	ns	
t osw	Write Data Setup Time	40	-	ns	
tонw	Write Data Hold Time	7	_	ns	Conservation of the second
t dhr	Read Data Hold Time	20	- ~	ns	
tон	Output Disable Time	-	70	ns	
tacc	Access Time	- /	140	ns	
PWcsl	Chip Select Low Pulse Width (Read) Chip Select Low Pulse Width (Write)	120 60		ns	
PWcsh	Chip Select High Pulse Width (Read) Chip Select High Pulse Width (Write)	60 60	-	ns	
t R	Rise Time	¥	15	ns	
t⊧	Fall Time	_	15	ns	

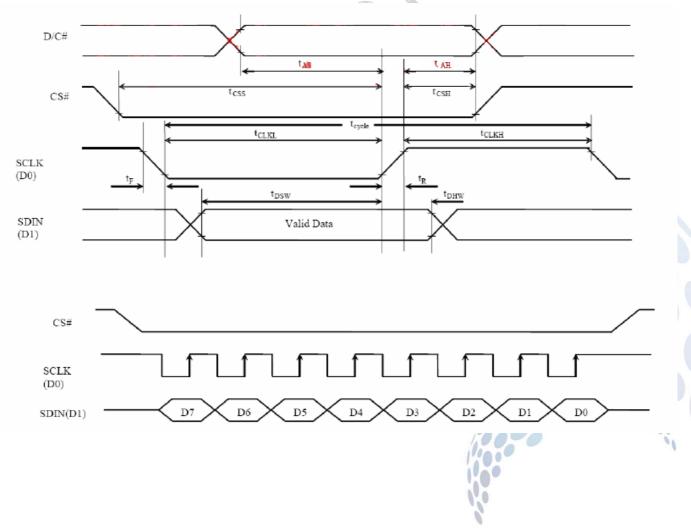
* (VDD - VSS = 2.4V to 2.6V, VDDIO = 1.6V, VCI = 2.8V, Ta = 25° C)



8.3.2 80XX-Series MPU Parallel Interface Timing Characteristics:

Symbol	Description	Min	Max	Unit
tcycle	Clock Cycle Time	300	-	ns
tas	Address Setup Time	10	-	ns
tан	Address Hold Time	0	-	ns
t dsw	Write Data Setup Time	40	-	ns
t dhw	Write Data Hold Time	7	- Contraction -	ns
t DHR	Read Data Hold Time	20		ns
tон	Output Disable Time	_ /	70	ns
tacc	Access Time	-4600	140	ns
t PWLR	Read Low Time	150	-	ns
t pwlw	Write Low Time	60	-	ns
t PWHR	Read High Time	60	-	ns
t PWHW	Write High Time	60	-	ns
tcs	Chip Select Setup Time	0	-	ns
tсsн	Chip Select Hold Time to Read Signal	0	-	ns
t CSF	Chip Select Hold Time	20	-	ns
tR	Rise Time	-	15	ns
t⊧	Fall Time	-	15	ns

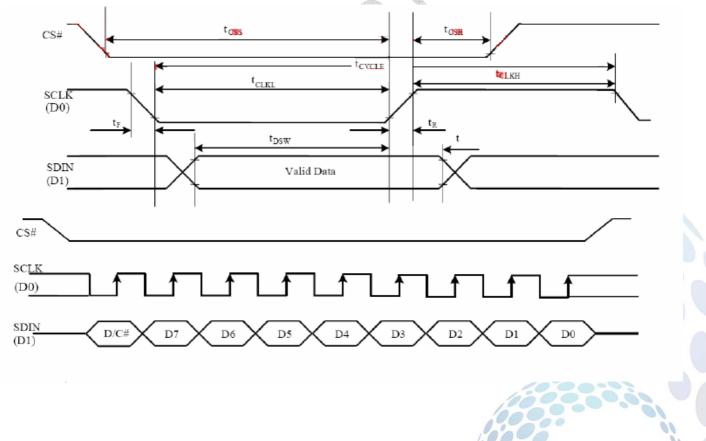
* (VDD - VSS = 2.4V to 2.6V, VDDIO = 1.6V, VCI = 2.8V, Ta = 25° C)



8.3.3 Serial Interface Timing Characteristics: (4-wire SPI)

Symbol	Description	Min	Мах	Unit
tcycle	Clock Cycle Time	100	-	ns
tas	Address Setup Time	15	-	ns
tан	Address Hold Time	15	-	ns
tcss	Chip Select Setup Time	20	-	ns
t csн	Chip Select Hold Time	10	-	ns
t osw	Write Data Setup Time	15	-	ns
tонw	Write Data Hold Time	15	-	ns
t clkl	Clock Low Time	20	-	ns
t clkh	Clock High Time	20	-	ns
tR	Rise Time	-	15	ns
t⊧	Fall Time	-	15	ns

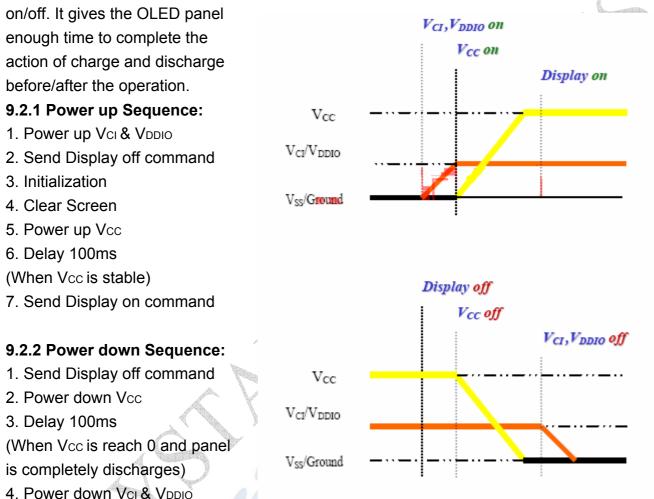
* (VDD - VSS = 2.4V to 2.6V, VDDIO = 1.6V, VCI = 2.8V, Ta = 25°C)


Page 17, Total 31 Pages

8.3.4 Serial Interface Timing Characteristics: (3-wire SPI)

Symbol	Description	Min	Мах	Unit
t cycle	Clock Cycle Time	100	-	ns
tas	Address Setup Time	15	-	ns
tан	Address Hold Time	15	-	ns
tcss	Chip Select Setup Time	20	-	ns
tсsн	Chip Select Hold Time	10	-	ns
t DSW	Write Data Setup Time	15	-	ns
tонw	Write Data Hold Time	15	-	ns
t CLKL	Clock Low Time	20	-	ns
t clkh	Clock High Time	20	-	ns
t R	Rise Time	-	15	ns
t⊧	Fall Time	-	15	ns

* (VDD - VSS = 2.4V to 2.6V, VDDIO = 1.6V, VCI = 2.8V, Ta = 25°C)


9. Functional Specification

9.1. Commands

Refer to the Technical Manual for the SSD1322

9.2 Power down and Power up Sequence

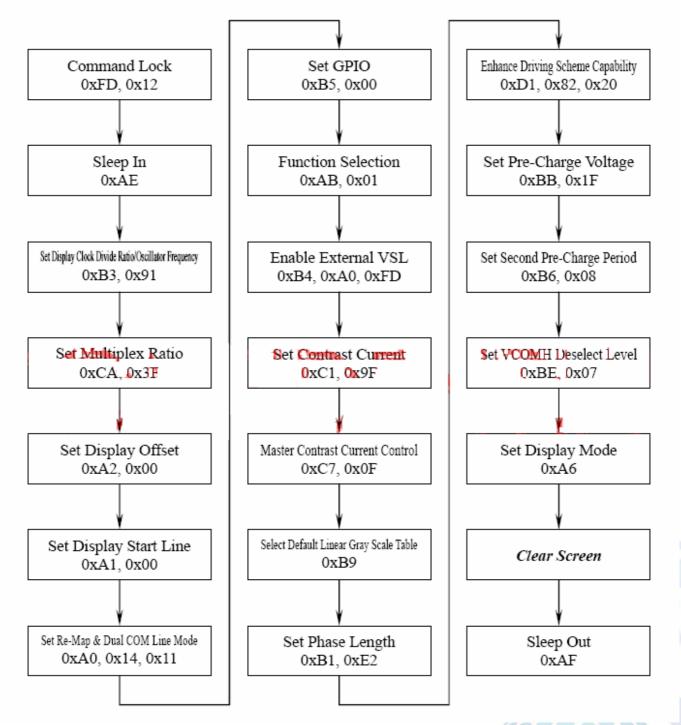
To protect OLED panel and extend the panel life time, the driver IC power up/down routine should include a delay period between high voltage and low voltage power sources during turn

9.3 Reset Circuit

When RES# input is low, the chip is initialized with the following status:

- 1. Display is OFF
- 2. 480×128 Display Mode

3. Normal segment and display data column and row address mapping (SEG0 mapped to column address 00h and COM0 mapped to row address 00h)


- 4. Display start line is set at display RAM address 0
- 5. Column address counter is set at 0
- 6. Normal scan direction of the COM outputs
- 7. Contrast control registers is set at 7Fh

9.4 Actual Application Example

Command usage and explanation of an actual example

<Initialization>

If the noise is accidentally occurred at the displaying window during the operation, please reset the display in order to recover the display function.

10.Reliability

10.1 Contents of Reliability Tests

Item	Conditions	Criteria
High Temperature Operation	85°C, 500 hrs	
Low Temperature Operation	-30°C, 500 hrs	
High Temperature Storage	90°C, 500 hrs	The operational
Low Temperature Storage	-40°C, 500 hrs	functions work.
High Temperature/Humidity Storage	60°C, 90% RH, 500 hrs	
Thermal Shock	-40°C 85°C, 100 cycles 30 mins dwell	

* The samples used for the above tests do not include polarizer.

* No moisture condensation is observed during tests.

10.2 Lifetime

End of lifetime is specified as 50% of initial brightness reached.

			18 YORK	1235. · · ·	
Parameter	Min	Max	Unit	Condition	Notes
Operating Life Time	50,000	-	hr	100 cd/m ₂ , 50% Checkerboard	6

Note 6: The average operating lifetime at room temperature is estimated by the accelerated operation at high temperature conditions.

10.3 Failure Check Standard

After the completion of the described reliability test, the samples were left at room temperature for 2 hrs prior to conducting the failure test at $23\pm5^{\circ}$ C; $55\pm15\%$ RH.

11. Outgoing Quality Control Specifications

11.1 Environment Required

Customer's test & measurement are required to be conducted under the following conditions:

Temperature: Humidity: Fluorescent Lamp: Distance between the Panel & Lamp: Distance between the Panel & Eyes of the Inspector:

Finger glove (or finger cover) must be worn by the inspector.

Inspection table or jig must be anti-electrostatic.

11.2 Sampling Plan

Level II, Normal Inspection, Single Sampling,

11.3 Criteria & Acceptable Quality Level

Partition	AQL	Definition	
Major	0.65	Defects in Pattern Check (Display On)	
Minor	1.0	Defects in Cosmetic Check (Display Off)	

11.3.1 Cosmetic Check (Display Off) in Non-Active Area

Check Item	Classification	Criteria
Panel General Chipping	Minor	X > 6 mm (Along with Edge) Y > 1 mm (Perpendicular to edge)

23 ± 5°C 55 ± 15 %RH 30W ≥ 50 cm ≥ 30 cm

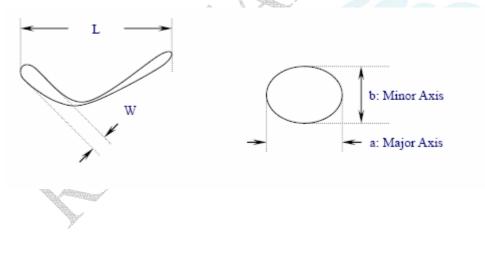
11.3.1 Cosmetic Check (Display Off) in Non-Active Area (Continued)

Check Item	Classification	Criteria	
Panel Crack	Minor	Any crack is not allowable.	
Cupper Exposed (Even Pin or Film)	Minor	Not Allowable by Naked Eye Inspection	
Film or Trace Damage	Minor		
Terminal Lead Twist	Minor	Not Allowable	
Terminal Lead Broken	Minor	Not Allowable	
Terminal Lead Prober Mark	Acceptable		

Page 23, Total 31 Pages

Check Item	Classification	Criteria	
Terminal Lead Bent	Minor	NG if any bent lead cause lead shorting.	
(Not Twist or Broken)	Minor	NG for horizontally bent lead more than 50% of its width.	
Glue or Contamination on Pin (Couldn't Be Removed by Alcohol)	Minor		1000
Ink Marking on Back Side of panel (Exclude on Film)	Acceptable	Ignore for Any	

11.3.1 Cosmetic Check (Display Off) in Non-Active Area (Continued)


11.3.2 Cosmetic Check (Display Off) in Active Area

It is recommended to execute in clear room environment (class 10k) if actual in necessary.

Check Item	Classification	Criteria	
Any Dirt & Scratch on Polarizer's Protective Film	Acceptable	Ignore for not Affect the Polarizer	
Scratches, Fiber, Line-Shape Defect (On Polarizer)	Minor	$ \begin{array}{ll} W \leq 0.1 & \mbox{Ignore} \\ W > 0.1, \ L \leq 2 & \ n \leq 1 \\ L > 2 & \ n = 0 \end{array} $	
Dirt, Black Spot, Foreign Material, (On Polarizer)	Minor	$\begin{array}{ll} \Phi \leq 0.1 & \text{Ignore} \\ 0.1 < \Phi \leq 0.25 & n \leq 1 \\ 0.25 < \Phi & n = 0 \end{array}$	
Dent, Bubbles, White spot (Any Transparent Spot on Polarizer)	Minor	Φ ≤ 0.5 → Ignore if no Influence on Display 0.5 < Φ n = 0	
Fingerprint, Flow Mark (On Polarizer)	Minor	Not Allowable	

*Protective film should not be tear off when cosmetic check.

** Definition of W & L & Φ (Unit: mm): Φ = (a + b) / 2

11.3.3 Pattern Check (Display On) in Active Area

Check Item	Classification	Criteria	
No Display	Major		
Missing Line	Major		
Pixel Short	Major		
Darker Pixel	Major		
Wrong Display	Major		
Un-uniform	Major		

12. Precautions When Using These OLED Display Modules

12.1 Handling Precautions

1) Since the display panel is being made of glass, do not apply mechanical impacts such us dropping from a high position.

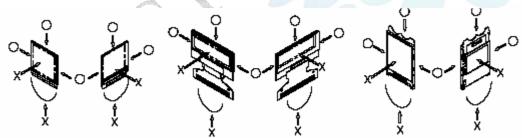
2) If the display panel is broken by some accident and the internal organic substance leaks out, be careful not to inhale nor lick the organic substance.

3) If pressure is applied to the display surface or its neighborhood of the OLED display module, the cell structure may be damaged and be careful not to apply pressure to these sections.

4) The polarizer covering the surface of the OLED display module is soft and easily scratched. Please be careful when handling the OLED display module.

5) When the surface of the polarizer of the OLED display module has soil, clean the surface. It takes advantage of by using following adhesion tape.

* Scotch Mending Tape No. 810 or an equivalent


Never try to breathe upon the soiled surface nor wipe the surface using cloth containing solvent such as ethyl alcohol, since the surface of the polarizer will become cloudy.

Also, pay attention that the following liquid and solvent may spoil the polarizer:

- * Water
- * Ketone
- * Aromatic Solvents

6) Hold OLED display module very carefully when placing OLED display module into the system housing. Do not apply excessive stress or pressure to OLED display module. And, do not over bend the film with electrode pattern layouts.

These stresses will influence the display performance. Also, secure sufficient rigidity for the outer cases.

7) Do not apply stress to the LSI chips and the surrounding molded sections.

8) Do not disassemble nor modify the OLED display module.

- 9) Do not apply input signals while the logic power is off.
- 10) Pay sufficient attention to the working environments when handing OLED display modules

to prevent occurrence of element breakage accidents by static electricity.

- * Be sure to make human body grounding when handling OLED display modules.
- * Be sure to ground tools to use or assembly such as soldering irons.

* To suppress generation of static electricity, avoid carrying out assembly work under dry environments.

* Protective film is being applied to the surface of the display panel of the OLED display module. Be careful since static electricity may be generated when exfoliating the protective film.

11) Protection film is being applied to the surface of the display panel and removes the protection film before assembling it. At this time, if the OLED display module has been stored for a long period of time, residue adhesive material of the protection film may remain on the surface of the display panel after removed of the film. In such case, remove the residue material by the method introduced in the above Section 5).

12) If electric current is applied when the OLED display module is being dewed or when it is placed under high humidity environments, the electrodes may be corroded and be careful to avoid the above.

12.2 Storage Precautions

1) When storing OLED display modules, put them in static electricity preventive bags avoiding exposure to direct sun light nor to lights of fluorescent lamps. and, also, avoiding high temperature and high humidity environment or low temperature (less than 0°C) environments. (We recommend you to store these modules in the packaged state when they were shipped from RAYSTAR Display Co., Ltd)

At that time, be careful not to let water drops adhere to the packages or bags nor let dewing occur with them.

2) If electric current is applied when water drops are adhering to the surface of the OLED display module, when the OLED display module is being dewed or when it is placed under high humidity environments, the electrodes may be corroded and be careful about the above.

12.3 Designing Precautions

1) The absolute maximum ratings are the ratings which cannot be exceeded for OLED display module, and if these values are exceeded, panel damage may be happen.

2) To prevent occurrence of malfunctioning by noise, pay attention to satisfy the VIL and VIH specifications and, at the same time, to make the signal line cable as short as possible.

3) We recommend you to install excess current preventive unit (fuses, etc.) to the power circuit (VDD). (Recommend value: 0.5A)

4) Pay sufficient attention to avoid occurrence of mutual noise interference with the neighboring devices.

5) As for EMI, take necessary measures on the equipment side basically.

6) When fastening the OLED display module, fasten the external plastic housing section.

7) If power supply to the OLED display module is forcibly shut down by such errors as taking out the main battery while the OLED display panel is in operation, we cannot guarantee the quality of this OLED display module.

8) The electric potential to be connected to the rear face of the IC chip should be as follows:

SSD1322

* Connection (contact) to any other potential than the above may lead to rupture of the IC.

12.4 Precautions when disposing of the OLED display modules

1) Request the qualified companies to handle industrial wastes when disposing of the OLED display modules. Or, when burning them, be sure to observe the environmental and hygienic laws and regulations.

12.5 Other Precautions

1) When an OLED display module is operated for a long of time with fixed pattern may remain as an after image or slight contrast deviation may occur.

Nonetheless, if the operation is interrupted and left unused for a while, normal state can be restored. Also, there will be no problem in the reliability of the module.

2) To protect OLED display modules from performance drops by static electricity rapture, etc., do not touch the following sections whenever possible while handling the OLED display modules.

- * Pins and electrodes
- * Pattern layouts such as the FPC

3) With this OLED display module, the OLED driver is being exposed. Generally speaking, semiconductor elements change their characteristics when light is radiated according to the principle of the solar battery. Consequently, if this OLED driver is exposed to light, malfunctioning may occur.

* Design the product and installation method so that the OLED driver may be shielded from light in actual usage.

* Design the product and installation method so that the OLED driver may be shielded from light during the inspection processes.

4) Although this OLED display module stores the operation state data by the commands and the indication data, when excessive external noise, etc. enters into the module, the internal status may be changed. It therefore is necessary to take appropriate measures to suppress noise generation or to protect from influences of noise on the system design.

5) We recommend you to construct its software to make periodical refreshment of the operation statuses (re-setting of the commands and re-transference of the display data) to cope with catastrophic noise.

Page: 1

Modu	lle Sample	e Estimate Feedback Sheet
Module Number :		
_		
1 <u>► Panel Specification</u> :	•	
1. Panel Type:	Pass	□NG ,
2. Numbers of Pixel :	Pass	□NG ,
3. View Area :	Pass	□NG ,
4. Active Area :	Pass	□NG ,
5.Emitting Color :	Pass	□NG ,
6.Uniformity :	□Pass	□NG ,
7.Operating	Pass	□NG ,
Temperature :		
8.Storage Temperature :	Pass	□NG ,
9.Others :		
2 · Mechanical Specification	<u>on</u> :	
1. PCB Size :	□Pass	□NG ,
2.Frame Size :	□Pass	□NG ,
3.Materal of Frame :	□Pass	□NG ,
4.Connector Position :	□Pass	□NG ,
5.Fix Hole Position :	□Pass	□NG,
6. Thickness of PCB :	□Pass	□NG ,
7. Height of Frame to	□Pass	□NG ,
PCB :		
8.Height of Module :	□Pass	□NG ,
9.Others :	□Pass	□NG ,
3 · Relative Hole Size		
1.Pitch of Connector :	□Pass	□NG ,
2.Hole size of	□Pass	□NG ,
Connector :		
3.Mounting Hole size :	□Pass	□NG ,
4.Mounting Hole Type :	□Pass	□NG ,
5.Others :	□Pass	□NG ,

>> Go to page 2 <<

Page: 2

Module Number :			
4 · Electronic Characteristics of Module :			
1.Input Voltage :	□Pass	□NG ,	
2.Supply Current :	□Pass	□NG ,	
3.Driving Voltage for OLED :	□Pass	□NG ,	
4.Contrast for OLED :	□Pass	□NG ,	for the second
5.Negative Voltage Output :	□Pass	□NG ,	
6.Interface Function :	□Pass	□NG ,	
7.ESD test :	□Pass	□NG ,	
8.Others :	□Pass	□NG ,	

5 \ <u>Summary</u> :

Sales signature:_____ Customer Signature:_____

Date :

Page 31, Total 31 Pages